If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-60y=0
a = 6; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·6·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*6}=\frac{0}{12} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*6}=\frac{120}{12} =10 $
| -57-2k=-45 | | -65-8f=-81 | | 10g=80 | | 44=12-f | | -0.15=y/0.8+0.6 | | 4^5x=8^5 | | w/3-19=-20 | | 4-8+8g=56 | | 2v+17=15 | | r/2-2=4 | | (9x-3)/3=(4x-3)/7 | | y=290 | | 140=200-3x | | 25=4,5z+12 | | 3.8/q=17.3 | | 99-g=10 | | 5(c*2)=50 | | 5d+10=8d−11* | | -3=-30-v | | (D^4+10D^2+9)*y=0 | | -37=-30-v | | 5(x+2)-4=25 | | s/9+84=87 | | 5(x+2)–4=25 | | h/8-17=-19 | | -10+4f=6 | | z/2+5=-1 | | 4+3n=-11 | | x=-1/16 | | -5(x-3)=2(x-1) | | 21/4=12x+6= | | 10p−3=1+5p−9 |